DNA Recombination HOLLIDAY JUNCTIONS DYNAMICS AND BRANCH MIGRATION*□S

نویسندگان

  • Alexander Y. Lushnikov
  • Alexey Bogdanov
  • Yuri L. Lyubchenko
چکیده

Holliday junctions are critical intermediates for homologous, site-specific recombination, DNA repair, and replication. A wealth of structural information is available for immobile four-way junctions, but the controversy on the mechanism of branch migration of Holliday junctions remains unsolved. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal (Sigal, N., and Alberts, B. (1972) J. Mol. Biol. 71, 789–793 and Meselson, M. (1972) J. Mol. Biol. 71, 795–798), exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration (Panyutin, I. G., and Hsieh, P. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 2021–2025) suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration and time-lapse atomic force microscopy, an imaging technique capable of imaging DNA dynamics. The single molecule atomic force microscopy experiments performed in the presence and in the absence of divalent cations show that mobile Holliday junctions adopt an unfolded conformation during branch migration that is retained despite a broad range of motion in the arms of the junction. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA recombination: holliday junctions dynamics and branch migration.

Holliday junctions are critical intermediates for homologous, site-specific recombination, DNA repair, and replication. A wealth of structural information is available for immobile four-way junctions, but the controversy on the mechanism of branch migration of Holliday junctions remains unsolved. Two models for the mechanism of branch migration were suggested. According to the early model of Al...

متن کامل

Observing spontaneous branch migration of Holliday junctions one step at a time.

Genetic recombination occurs between homologous DNA molecules via a four-way (Holliday) junction intermediate. This ancient and ubiquitous process is important for the repair of double-stranded breaks, the restart of stalled replication forks, and the creation of genetic diversity. Once formed, the four-way junction alone can undergo the stepwise exchange of base pairs known as spontaneous bran...

متن کامل

Single-molecule studies of DNA and RNA four-way junctions.

Branched helical junctions are common in nucleic acids. In DNA, the four-way junction (Holliday junction) is an essential intermediate in homologous recombination and is a highly dynamic structure, capable of stacking conformer transitions and branch migration. Our single-molecule fluorescence studies provide unique insight into the energy landscape of Holliday junctions by visualizing these pr...

متن کامل

A general model for site-specific recombination by the integrase family recombinases.

We present here a general model for integrase family site-specific recombination using the geometric relationships of the cleavable phosphodiester bonds and the disposition of the recombinase monomers (defined by their binding planes) with respect to them. The 'oscillation model' is based largely on the conformations of the recombinase-bound DNA duplexes and their dynamics within Holliday junct...

متن کامل

Holliday junction dynamics and branch migration: single-molecule analysis.

The Holliday junction (HJ) is a central intermediate in various genetic processes including homologous and site-specific recombination and DNA replication. Branch migration allows the exchange between homologous DNA regions, but the detailed mechanism for this key step of DNA recombination is unidentified. Here, we report direct real-time detection of branch migration in individual molecules. U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003